Predictive risk estimation for the expectation maximization algorithm with Poisson data
نویسندگان
چکیده
In this work, we introduce a novel estimator of the predictive risk with Poisson data, when loss function is Kullback-Leibler divergence, in order to define regularization parameter's choice rule for Expectation Maximization (EM) algorithm. To aim, prove counterpart Stein's Lemma Gaussian variables, and from result derive proposed showing its analogies well-known Unbiased Risk Estimator valid quadratic loss. We that asymptotically unbiased increasing number measured counts, under certain mild conditions on method. show these are satisfied by EM algorithm then apply select optimal reconstruction. present some numerical tests case image deconvolution, comparing performances other methods available literature, both inverse crime non-inverse setting.
منابع مشابه
The Expectation Maximization Algorithm
This note represents my attempt at explaining the EM algorithm (Hartley, 1958; Dempster et al., 1977; McLachlan and Krishnan, 1997). This is just a slight variation on TomMinka’s tutorial (Minka, 1998), perhaps a little easier (or perhaps not). It includes a graphical example to provide some intuition. 1 Intuitive Explanation of EM EM is an iterative optimizationmethod to estimate some unknown ...
متن کاملData Synthesis with Expectation-Maximization
A problem of increasing importance in computer graphics is to generate data with the style of some previous training data, but satisfying new constraints. If we use a probabilistic latent variable model, then learning the model will normally be performed using Expectation-Maximization (EM), or one of its generalizations. We show that data synthesis for such problems can also be performed using ...
متن کاملExpectation Maximization Deconvolution Algorithm
In this paper, we use a general mathematical and experimental methodology to analyze image deconvolution. The main procedure is to use an example image convolving it with a know Gaussian point spread function and then develop algorithms to recover the image. Observe the deconvolution process by adding Gaussian and Poisson noise at different signal to noise ratios. In addition, we will describe ...
متن کاملThe Noisy Expectation-Maximization Algorithm
We present a noise-injected version of the Expectation-Maximization (EM) algorithm: the Noisy Expectation Maximization (NEM) algorithm. The NEM algorithm uses noise to speed up the convergence of the EM algorithm. The NEM theorem shows that additive noise speeds up the average convergence of the EM algorithm to a local maximum of the likelihood surface if a positivity condition holds. Corollary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2021
ISSN: ['0266-5611', '1361-6420']
DOI: https://doi.org/10.1088/1361-6420/abe950